当前位置:首页 > 全部文章 2019年01月05日
阳光阿里码农眼中的数学之~数学基础-我为Net狂

码农眼中的数学之~数学基础-我为Net狂
写在前面:文章里面的图片公式都是逆天一个个打出来画出来的,公式系列基本上都提供了源码
图片基本上不太加水印了,加了的也留了空间可以让你裁剪去水印,这样你引用也比较方便 ~
但是还是想说下:”加个参考链接呗,逆天写作也不容易啊~“1.基础概念
线性代数研究的是什么内容?
把2维世界转换成2维的世界
把3维世界转换成2维的世界
把2维世界转换成3维的世界
1维直线、2维平面(长宽)、3维空间(长宽高 | xyz轴)、4维时空(xyz轴+时间轴)
学习中主要就是学习 矩阵、 向量等颜思诗,理解 线性映射、 特征值和 特征向量等。
总结:线性代数就是一门将M维世界与N维世界联系起来的学科1.1.数的分类
一开始人们用的数都是 自然数 (0、1、2...)来计算
后来发现用小数减大数就没法计算了。eg: 1-2=?
接着就引入了 负数,然后常用的数就变成了 整数 (正整数、0、负整数),这样就可以快乐的 加减乘运算
整数:
自然数
负数
后来发现,像 1/3=?这类的不能整除了,于是就引入了 分数,
这样数的界限又扩充了,就叫 有理数 ,这样加减乘除都可以通过分数来表示了
有理数(分数):
整数
正整数
0
负整数
好景不长,之后求圆面积啥的,又发现了像 π、√3这类的,没法用分数表示的数,
于是就又在原有基础上扩展了,加入了 无理数,数的界限又扩展了==> 实数
实数(小数):
有理数(分数)
正整数
0
负整数
整数
非整数的有理数
无理数
这下总算可以了吧,可事实往往出乎意料,像二次曲线求解有无解的情况(曲线跟x轴不相交)
这太不科学了吧,然后就引入了 虚数i 的概念,并定义 i2=-1,数的范围又扩大了,就叫 复数
举个例子(后面有推导):
$$x = {-b pm sqrt{b^2-4ac} over 2a}$$

以前我们遇到: x2+3=0,因为判别式 b2-4ac<0 所以方程无解(或者曲线画出来,看跟x轴有几个交点==>就说明有几个解)
其实我们中学学的这个无解,指的是在实数范围内无解
引入虚数后: x2+3=0==> x2-(-3)=0,因为 i2=-1 ==> (x+√3i)(x-√3i)=0 有解了
# 画个图看看曲线长什么样
import matplotlib.pyplot as plt
# 生成x和y的值
x_list = list(range(-10, 11))
y_list = [x**2 + 3 for x in x_list] # 2**3 ==> 8 **是Python里面的幂运算符
print(x_list)
print(y_list)
# 画图
plt.plot(x_list, y_list)
# 显示图片
plt.show()
[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[103, 84, 67, 52, 39, 28, 19, 12, 7, 4我的书记人生 , 3, 4, 7, 12, 19, 28, 39, 52, 67, 84, 103]

综上所述,数可以分为:
复数: z=a+bi,阳光阿里i2=-1
实数(虚部b=0)
无限不循环小数:π、√3
正整数:1、2、3
0
负整数:-1、-2、-3
[正负]有限小数:0.3 ==> (3/10)
[正负]循环小数:0.3333... (1/3)
有理数
无理数
整数
非整数的有理数([正负]分数)
虚数(虚部b!=0)
纯虚数(虚部b!=0,且实部a=0)
非纯虚数扩展:二次方程求解公式的推导
这个应该是初中学的,很多学校教数学就让背公式,其实这样容易忘记(你好几年不接触数学公式还记得?)会推导才是根本 :
其实不仅仅是数学公式了,很多程序中的算法也是这样,都是需要推导的,不然只能用而不能深究,就更不提创新了。不扯了,进入正题:

方便有需求的人,推导过程的源码贴一下:
$ax^2+bx+c=0(a eq0)$
要求x,那我们先两边同时除以a:
$x^2+frac{b}{a}x+frac{c}{a}=0$
把和x没关系的常数移到等号另一边:
$x^2+frac{b}{a}x=-frac{c}{a}$
看到左边就想到了 ==> $x^2+2ax+a^2$ 我们来凑一下:
$x^2+2*frac{b}{2a}x+(frac{b}{2a})^2=(frac{b}{2a})^2-frac{c}{a}$
因为:$x^2+2ax+a^2=(x+a)^2$ 所以可以转换成:
$(x+frac{b}{2a})^2=(frac{b}{2a})^2-frac{c}{a}$
把右边化简一下:
$(x+frac{b}{2a})^2=frac{b^2}{4a^2}-frac{4ac}{4a^2}=frac{b^2-4ac}{4a^2}$
去左边平方(右边开根号):
$x+frac{b}{2a}=frac{ pm sqrt{b^2-4ac}}{2a}$
把左边的常数移过去:
$x=frac{-b pm sqrt{b^2-4ac}}{2a}$1.2.命题相关
命题中学阶段就接触了,我们来先说说命题 :可以判断真假的语句叫做命题
比如: 小明是个男的伊路德人,这个不管对错肯定有个确定的答案
再比如: 小明是活泼好学的孩子,这个就不一定了,公说公有理婆说婆有理,这种结果模糊不确定的就不是命题
充分条件和必要条件
这个时间长了容易混淆,举个例子: 小明是人类, 人类是小明
通过小明肯定能推出他是个人武丁与妇好,这个就叫必要条件
人就一定是小明吗?不一定吧 ==> 这个就是充分条件
如果P成立,Q就成立是真命题时,就可以表示为: P=>Q (由P肯定能推导出Q)(eg: 小明=>人):
P是Q的必要条件
Q是P的充分条件
充分必要条件:
如果 P=>Q,而且 Q=>P,那么:
P是Q的充分必要条件
Q是P的充分必要条件
表示为: P<=>Q1.3.集合系列
集合应该是刚上高中那会教的内容,我们来看看:
集合 (Python里面用 set 来表示):某种特定性质的对象,汇总成的集体( 人以类聚,物以群分) 这些对象称为该集合的元素。
集合中的元素有三个特征:
确定性(集合中的元素必须是确定的)
互异性(集合中的元素互不相同)eg:集合A={1潮州凤翔峡,a},则a不能等于1)
无序性(集合中的元素没有先后之分)eg:集合{3,4,5}和{3毫米波治疗仪,5,4}是同一个集合
表示方式,eg:10以内的偶数:
X={0,2,4,6,8}
X={2n|n=0卤三国怎么样,何广位1,2,3,4}
当x是X集合里面的元素时,可以表示为: x∈X eg: 2∈X
# Python3 Code
X = set([x for x in range(10) if x%2==0])
print(X)
{0, 2, 4, 6, 8}
# 当x是X集合里面的元素时前缘席慕容,可以表示为:x ∈ X
# eg:2 ∈ X
2 in X
True
子集 :当一个集合A里面所有元素都属于集合B时,称A是B的子集。即: A?B
eg:集合A:{1,2,3} 集合B:{1,2,3,4} ==> A?B
如果两个集合A和B的元素完全相同,则称A与B两个集合相等,记为 A=B:
集合A:{1樱雪丸,2,3,4} 集合B:{1,2,3,4} ==> A?B and B?A ==> A=B
真子集 :如果集合A是集合B的子集 A?B,并且集合B中至少有一个元素x?A,那么集合A叫做集合B的真子集
简单讲: 如果A包含于B,且A不等于B,就说集合A是集合B的真子集( A有的B全有,B有的A不一定有)
如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集雷霄骅。可知任一集合A是自身的子集,空集是任一集合的子集。真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等。所有亚洲国家组成的集合是地球上所有国家组成的集合的真子集;所有自然数的集合是所有整数的集合的真子集。
A = set([1,2,3])
B = set([1,2,3,4])
print(A)
print(B)
{1李攀新浪博客 , 2, 3}
{1, 2, 3, 4}
# 子集(判断A是否是B的子集)
A.issubset(B)
True
# 父集(B是否是A的父集)
B.issuperset(A)
True
A = B
A.issubset(B)
True
并集 :由所有属于集合A或属于集合B的元素所组成的集合,读作“A并B”(或“B并A”)并集越并越多,而且没有重复元素。
记作 A∪B or B∪A,即 A∪B={x|x∈A,或x∈B}
交集 :由属于A且属于B的相同元素组成的集合,读作“A交B”(或“B交A”)交集越交越少。
记作 A∩B or B∩A,即 A∩B={x|x∈A元徵宫词,且x∈B}
若A包含B,则 A∩B=B,A∪B=A
差集 :A,B是两个集合尾关优哉,所有x∈A且x?B的元素构成的集合,叫做集合A减集合B(或集合A与集合B之差)
类似地,对于集合A、B,我们把集合 A-B={x∣x∈A,且x?B} 叫做A与B的差集( 把B中元素从A中减去)
补集 :一般指绝对补集,即一般地,设S是一个集合,A是S的一个子集(S包含于A)( 大前提),由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集红狼牙鰕虎鱼。
扩展:在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集
set1=set([1,2,5])
set2=set([2,4,6])
print(set1)
print(set2)
{1, 2, 5}
{2血雾时代, 4, 6}
# 交集 A∩B={x|x∈A,且x∈B}
set1 & set2
{2}
# 并集 A∪B={x|x∈A,或x∈B}
set1 | set2
{1, 2, 4, 5, 6}
# 差集 A-B={x∣x∈A,且x?B}
set1 - set2
{1, 5}
set3=set(list(range(10)))
print(set3)
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
# 【大前提】set2是set3的一个子集(set3包含于set2)
set2.issubset(set3)
True
# 这时候求差集,就等于求补集
set3 - set2
{0, 1, 3, 5, 7, 8, 9}1.4.映射系列(映射、像、定义域和值域、满单射、双射、逆映射、线性映射等)
这个系列应该是高一的知识1.映射与像:
设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素 x,在集合B中都有唯一的元素 y与之对应,那么就称对应的规则 f 为从集合A到集合B的 映射 一般这样表示: f:A→B。其中, y称为元素 x在映射 f下的 像 ,记作: y=f(x)。
通俗讲:
*把使集合A的元素与集合B的元素相对应的 规则叫做 “集合A到集合B的映射” *
如果从A集合中取元素 x,通过 f得到其对应B集合的元素 y郑丰喜。这个新的元素就叫做:“ x通过映射f形成的像”
像这个说的还是有点抽象,举个简单的例子:
高中的时候经常做这样的练习: f(x)=2x+1
用映射来解释就是:“映射 f 是使集合B的元素 2x+1 与集合A的元素 x 相对应的规则”再解释像就简单了: f(2)
x=2 通过 f 形成的像是 2*2+12.值域和定义域:
我们把映像 f产生的值组成一个集合 {f(0)、f(1)、f(2)...}汤世生,这个集合就叫做“映像 f的值域”。
而 x值组成的集合 {0、1、2...} 就叫做“映像 f的定义域”。
这个值域的集合往往是集合B的子集:$lbrace f(x1),f(x2)...f(x_n) brace subseteq B$
比如说: f(x)=2x+1 定义域A{0、1、2、3}苇月伊织 ,那么求出来的值域是:{1、3、5、7},而B集合是{1、3、5、7、8}3.满射、单射、双射:
满射:如果值域任何元素都有至少有一个变量与之对应,那这个映射就叫做满射。
来个示意图:f(x)=x$^2$其实老版本的教科书还有一种说法叫做:”当映射f的值域等于集合B时,f为 满射“
单射:设f是由集合A到集合B的映射,如果所有x,y∈A,且x≠y,都有f(x)≠f(y),则称f为由A到B的 单射(函数f被称为是单射时,对每一值域内的y,存在至多一个定义域内的x使得f(x) = y)
来个图示:(两种情况都是)
双射 (一一映射):既是单射又是满射的映射称为 双射
图示:(偷个懒,拿上面的图片改改)4.逆映射:
这次先不定义月影灯,先看个图:
看完图基本上懂了(映射 g就是映射 f的逆映射),现在来定义一下:
逆映射 :
当f是双射(一一对应的单射)并且映射 f和映射 g满足:
g(f(x))=x
f(g(x))=x
那么映射 g就是映射 f的逆映射,表示方式:$f^{-1}:B ightarrow A$
5.线性映射
后面说线性回归之类的代码和数学知识时会讲,这边因为也是属于映射内容,所以简单提一下定义:
假设 $x1$ 和 $x2$ 是属于A集合中的任意元素, c 为任意实数, f 为从A到B的映射。

那么映射 f就是从A到B的线性映射

1.5.排列组合
这个应该是高二的时候学的,简单提一下
排列组合 :
排列:从给定个数的元素中取出指定个数的元素进行排序
组合:从给定个数的元素中仅仅取出指定个数的元素,不考虑排序
通俗讲:

如果还抽象的话,我们来看个案例:
小明请小潘和小张一起去食堂吃饭,食堂今天总共有5个菜
1.试问,他们从5个菜中选出3个不同的菜,有几种可能性?
假设有A、B、C、D、E这5个菜,那选出3个有如下组合(不管顺序):列举列举列举列举列举列举ABCABDABEACDACEADEBCDBCEBDECDE
$large {C^3_5=frac{5!}{3!(5-3)!}=frac{5×4×3×2×1}{3×2×1×2×1}=10}$

2.试问,选出的这3个菜有几种排放顺序?
假设选出的是A、B、C这3个菜,那它的排序有几种可能:序号列举列举AABCACBBBACBCACCABCBA
其实无论选择哪3种,他们的排序都是6种,3!=3×2×1=6
简单分析一下:
第一道菜可以在已经选好的菜里面选1个,那就是3种可能
第二道菜可以在剩下的2道菜中选1个,那就是2种可能(第一道刚才选好了,已经算确定的了)
第三道菜不用选了,因为现在只剩下1道了,那就是1种可能
所以有 3×2×1种可能==>3!=6种可能
3.试问,从5个菜中选出3个不同的菜,并按顺序打包带走总共有多少种可能第三天堂?
排列的个数其实就是: 5选3组合个数×3道菜可能的排序 = 10 × 6 =60
$large {A^3_5=frac{5!}{(5-3)!}=frac{5×4×3×2×1}{2×1}=60}$

简单分析推导一下:
第一个菜可以在5道菜里面选一个,那就是5种可能
第二道菜可以在剩下的4道菜里面选一个,那就是4种可能
第三道菜可以在剩下的3道菜里面选一个,那就是3种可能
那总共可能性就是:5×4×3=60种可能性,和上面公式计算一样结果
排列、组合、二项式定理公式口诀:
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。1.5.高中函数附录
以前在网上找的资料,你们有更好的可以贴一下(点我查看)1.6.高中数学公式
以前在网上找的资料,你们有更好的可以贴一下(点我查看)2.矩阵预告
下次和Numpy一起讲,这样才会~数学不枯燥,代码不空洞